





# **DONIT**<sup>®</sup> Sealing technologies

As a leader in gaskets, gasket sheets, and advanced sealing technologies, we offer the optimum solution with a perfect fit for your most challenging sealing requirements. Backed by decades of excellence in understanding of sealing problems, extensive know-how in application engineering, and consistent manufacturing of reliable high quality products, we are in position to respond quickly and efficiently to your inquiry.

## WE ARE A TRUE PARTNER FOR YOUR SUCCESS

With a wide experience in problem-solving and unshaken commitment to high quality standards, we are dedicated to provide you the best service and products. In addition, through customer-driven innovation, our strong R&D team is qualified to successfully design the adequate sealing solution.

Our customer satisfaction rests upon four pillars:

- Complete production chain and international sales network
- Quality assurance and safety
- Application engineering
- Technical training courses and seminars

# **THE DONIT® PHILOSOPHY**

Our philosophy is based on building long-term business relationship with our customers that extends across many sectors of industries. Customer satisfaction is our driving-force which is attained through the constant supply of reliable and high quality products embracing product improvement and support.

DONIT<sup>®</sup> gasket sheets and sealing solutions are high quality products which have received several industrial quality approvals. Our products support the environmental legislation without compromising their sealing performance.

## **EMPLOYEES**

#### Over 200 employees dedicated to you:

We strive for permanent professional and personal growth. We promote teamwork and diversity.

# Our international team supports you regardless of your geographical location.

## 80% - Secondary school / technical school or lower

18% - Bachelor or equivalent

2% - Doctoral or equivalent

## **CERTIFIED QUALITY**

We assure high quality, environmentally friendly products to our customers. Quality and care for the environment is embedded in both our minds and our organization.

Care for the environment is embedded in our tradition. DONIT TESNIT d.o.o. is certified by international ISO 9001 and ISO 14001 standards.



We also ensure that product quality and safety are in accordance with a number of widely recognized international standards such as:

DVGW (DIN 3535-6, VP 401), SVGW (DIN 3535-6), ELL, DVGW W270, BAM, WRAS, TA-Luft (VDI 2440), API 6FA / API 607, ISO 10497, ABS, DNV GL

| <form></form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DVGW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | amtec<br>Ministration                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DIN-DVGW type examination cartificate<br>DIN-DVGW-Beunwahaprofermfiket sectore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CERTIFICATE<br>No. MIT WORK ARCIA IN 107                                                                                                                                                                                                                                                                                                              |
| <section-header>  APCOVAL CENTRE TO   DEVICE   Set of the set of the</section-header> | An and a grant of a second sec | <text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>                                                                                                                                                                |
| APPRICURSCIENCIMUM     Convertient     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×BAM                                                                                                                                                                                                                                                                                                                                                  |
| <text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | APPROVALCULTIFICATION DATA SET A CONTRACTOR DE LA CONTRACTÓN DE LA CONTRAC | <text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text>                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <image/> <image/> <text><text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></text></text> |



DONIFLON<sup>®</sup> 900E

ONE CON PERSONNE

DONIFLON® 900E is an ePTFE gasket sheet manufactured by hot-expansion of 100% virgin PTFE, with fibrilised isotropic structure. It has outstanding chemical resistance to various media, except molten alkali metals. Its excellent compressibility enables very good adaptability to pressure sensitive connections of ceramic, glass, plastic-lined pipes or uneven flanges. It is recommended for pharmaceutical and food industries.



#### **TECHNICAL DATA** Typical values for 2 mm thickness

| Density              | DIN 28090-2 | g/cm³    | 0.8       |
|----------------------|-------------|----------|-----------|
| Compressibility      | ASTM F36J   | %        | 55        |
| Recovery             | ASTM F36J   | %        | 12        |
| Tensile strength     | ASTM F152   | MPa      | 32        |
| Stress resistance    | DIN 52913   |          |           |
| 30 MPa, 16 h, 150 °C |             | MPa      | 16        |
| Specific leak rate   | DIN 3535-6  | mg/(s⋅m) | 0.002     |
| pH range             |             |          | 0-14      |
| Operating conditions |             |          |           |
| Minimum temperature  |             | °C/°F    | -200/-328 |
| Maximum temperature  |             | °C/°F    | 260/500   |
| Pressure             |             | bar/psi  | 100/1450  |

#### **P-T DIAGRAM**

EN 1514-1, Type IBC, PN 40, DIN 28091-2 / 3.8, 2.0 mm



- General suitability Under common installation practices and chemical compatibility.
- Conditional suitability Appropriate measures ensure maximum performance for joint design and gasket installation. Technical consultation is recommended. Limited suitability - Technical consultation is mandatory.

P-T diagram indicates the maximum permissible combination of internal pressure and service temperature which can be simultaneously applied for a given gasket's thickness, size and tightness class. Given the wide variety of gasket applications and service conditions, these values should only be regarded as a guidance for the proper gasket assembly. In general, thinner gaskets exhibit better P-T properties.

#### Standard dimension of sheets

#### Size (mm): 1500 x 1500 Thickness (mm): 0.5 | 1.0 | 1.5 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0Other sizes and thicknesses available on request.

+ + + + + ÷ + + + ÷ + + + + + + + + ÷ ? + + + + + ٠ + + + + + + + + ÷ + ? +

| Acetamide                   | + | Dioxane                               | +  | Oleic acid                    |
|-----------------------------|---|---------------------------------------|----|-------------------------------|
| Acetic acid, 10%            | + | Diphyl (Dowtherm A)                   | +  | Oleum (Sulfuric acid, fuming) |
| Acetic acid, 100% (Glacial) | + | Esters                                | +  | Oxalic acid                   |
| Acetone                     |   | Ethane (gas)                          | ÷. | Oxygen (gas)                  |
| Acetonitrile                | 1 | Ethers                                | ÷  | Palmitic acid                 |
|                             | - | Ethyl acetate                         | ÷  | Paraffin oil                  |
| Acid chloridos              | Ŧ | Ethyl alcohol (Ethanol)               | -  | Pontono                       |
| Acid chiorides              | - | Ethyl adonot (Ethanot)                | -  | Pendale                       |
| Acrylic acid                | * |                                       | •  | Perchloroethylene             |
| Acrylonitrile               | + | Ethyl chloride [gas]                  | +  | Petroleum (Crude oil)         |
| Adipic acid                 | + | Ethylene (gas)                        | +  | Phenol (Carbolic acid)        |
| Air (gas)                   | + | Ethylene glycol                       | +  | Phosphoric acid, 40%          |
| Alcohols                    | + | Formaldehyde (Formalin)               | +  | Phosphoric acid, 85%          |
| Aldehydes                   | + | Formamide                             | +  | Phthalic acid                 |
| Alum                        | + | Formic acid, 10%                      | +  | Potassium acetate             |
| Aluminium acetate           | + | Formic acid, 85%                      | +  | Potassium bicarbonate         |
| Aluminium chlorate          | + | Formic acid, 100%                     | +  | Potassium carbonate           |
| Aluminium chloride          | + | Freon-12 (R-12)                       | +  | Potassium chloride            |
| Aluminium sulfate           | + | Freon-134a (R-134a)                   | +  | Potassium cyanide             |
| Amines                      | + | Freon-22 (R-22)                       | +  | Potassium dichromate          |
| Ammonia (gas)               | + | Fruit juices                          | +  | Potassium hydroxide           |
| Ammonium bicarbonate        | + | Fuel oil                              | +  | Potassium iodide              |
| Ammonium chloride           | + | Gasoline                              | +  | Potassium nitrate             |
| Ammonium hydroxide          | 1 | Gelatin                               | ÷  | Potassium permanganate        |
|                             | - | Glycerine (Glycerol)                  | ÷  | Propage (gas)                 |
| Anhydaidaa                  |   | Cheele                                | ÷. | Desculance (gas)              |
| Annydrides                  | * | Glycols                               | •  | Propylene (gas)               |
| Aniline                     | + | Helium (gas)                          | +  | Pyridine                      |
| Anisole                     | + | Heptane                               | +  | Salicylic acid                |
| Argon (gas)                 | + | Hydraulic oil (Glycol based)          | +  | Seawater/brine                |
| Asphalt                     | + | Hydraulic oil (Mineral type)          | +  | Silicones (oil/grease)        |
| Barium chloride             | + | Hydraulic oil (Phosphate ester based) | +  | Soaps                         |
| Benzaldehyde                | + | Hydrazine                             | +  | Sodium aluminate              |
| Benzene                     | + | Hydrocarbons                          | +  | Sodium bicarbonate            |
| Benzoic acid                | + | Hydrochloric acid, 10%                | +  | Sodium bisulfite              |
| Bio-diesel                  | + | Hydrochloric acid, 37%                | +  | Sodium carbonate              |
| Bio-ethanol                 | + | Hydrofluoric acid, 10%                | +  | Sodium chloride               |
| Black liquor                | + | Hydrofluoric acid, 48%                | +  | Sodium cyanide                |
| Borax                       | + | Hydrogen (gas)                        | +  | Sodium hydroxide              |
| Boric acid                  | - | Iron sulfate                          | ÷. | Sodium hypochlorite (Bleach)  |
| Butadiene (das)             | 1 | Isobutane (gas)                       | ÷  | Sodium silicate (Water glass) |
| Butane (gas)                | - | leooctane                             | ÷  | Sodium sulfate                |
| Rutul alcohol (Rutanol)     | Ŧ | Isopropo                              | ÷  | Sodium sulfido                |
| Putyria colid               |   | Isoprend cleanel (Isoprenonal)        | -  | Stareh                        |
| Butyric acid                | * | Isopropyl alconol (Isopropanol)       | •  | Starch                        |
|                             | * | Kerosene                              | •  | Steam                         |
| Calcium hydroxide           | + | Ketones                               | +  | Stearic acid                  |
| Carbon dioxide (gas)        | + | Lactic acid                           | +  | Styrene                       |
| Carbon monoxide (gas)       | + | Lead acetate                          | +  | Sugars                        |
| Cellosolve                  | + | Lead arsenate                         | +  | Sulfur                        |
| Chlorine (gas)              | + | Magnesium sulfate                     | +  | Sulfur dioxide (gas)          |
| Chlorine (in water)         | + | Maleic acid                           | +  | Sulfuric acid, 20%            |
| Chlorobenzene               | + | Malic acid                            | +  | Sulfuric acid, 98%            |
| Chloroform                  | + | Methane (gas)                         | +  | Sulfuryl chloride             |
| Chloroprene                 | + | Methyl alcohol (Methanol)             | +  | Tar                           |
| Chlorosilanes               | + | Methyl chloride (gas)                 | +  | Tartaric acid                 |
| Chromic acid                | + | Methylene dichloride                  | +  | Tetrahydrofuran (THF)         |
| Citric acid                 | + | Methyl ethyl ketone (MEK)             | +  | Thionyl chloride              |
| Copper acetate              | + | N-Methyl-pyrrolidone (NMP)            | +  | Titanium tetrachloride        |
| Copper sulfate              |   | Milk                                  | ÷. | Toluene                       |
| Creosote                    | 1 | Mineral oil (ASTM no 1)               | ÷  | 2.4-Toluenediisocvanate       |
| Cresols (Cresvlic acid)     |   | Motor oil                             | ÷  | Transformer oil (Mineral tuno |
| Cyclobovana                 |   | Nanhtha                               | -  | Trichlorocthylone             |
| Cyclonexane                 | + | Naprina                               | -  | Viscos                        |
| Uyclohexanol                | + | Nitric acid, 10%                      | +  | vinegar                       |
| Uyclohexanone               | + | Nitric acid, 65%                      | +  | vinyl chloride [gas]          |
| Decalin                     | + | Nitrobenzene                          | +  | Vinylidene chloride           |
| Dextrin                     | + | Nitrogen (gas)                        | +  | Water                         |
| Dibenzyl ether              | + | Nitrous gases (NOx)                   | +  | White spirits                 |
| Dibutyl phthalate           | + | Octane                                | +  | Xylenes                       |
| Dimethylacetamide (DMA)     | + | Oils (Essential)                      | +  | Xylenol                       |
| Dimethylformamide (DMF)     | + | Oils (Vegetable)                      | +  | Zinc sulfate                  |
|                             |   |                                       |    |                               |

All information and data quoted are based upon decades of experience in the production and use of sealing elements. This data may not be used to support any warranty claims. With its publication this latest edition supersedes all previous issues and is subject to change without further notice.

#### **CHEMICAL RESISTANCE CHART**

The recommendations made here are intended as a guideline for the selection of a suitable gasket type. As the function and durability of products depend upon a number of factors, the data may not be used to support any warranty claims.

Recommended

+

÷

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

- Recommendation depends on operating conditions
   Not recommended
- INUL recommended



For disclaimer please visit http://donit.eu/disclaimer/

Copyright © DONIT TESNIT, d.o.o.

All rights reserved

Date of issue: 09.2019 / TDS-D900E-09-2019



DONIFLON<sup>®</sup> 2010

Constant 200 Const

DONIFLON® 2010 is structurally enhanced PTFE gasket sheet filled with hollow glass microbeads. It has outstanding chemical resistance to various media, same as DONIFLON® 900E, except hydrofluoric acid. This material has enhanced creep performance compared to plain PTFE material. Its high compressibility enables very good adaptability to pressure sensitive connections of ceramic, glass, plastic-lined pipes or uneven flanges. It is recommended for pharmaceutical and food industries.

Please inquire



#### **TECHNICAL DATA** Typical values for 2 mm thickness

| Density              | DIN 28090-2 | g/cm³    | 1.5       |
|----------------------|-------------|----------|-----------|
| Compressibility      | ASTM F36J   | %        | 35        |
| Recovery             | ASTM F36J   | %        | 40        |
| Tensile strength     | ASTM F152   | MPa      | 14        |
| Stress resistance    | DIN 52913   |          |           |
| 30 MPa, 16 h, 150 °C |             | MPa      | 14        |
| Specific leak rate   | DIN 3535-6  | mg/(s·m) | 0.002     |
| pH range             |             |          | 0-14      |
| Operating conditions |             |          |           |
| Minimum temperature  |             | °C/°F    | -200/-328 |
| Maximum temperature  |             | °C/°F    | 260/500   |
| Pressure             |             | bar/psi  | 60/870    |

#### **P-T DIAGRAM**

Approvals

EN 1514-1, Type IBC, PN 40, DIN 28091-2 / 3.8, 2.0 mm



- General suitability Under common installation practices and chemical compatibility.
- Conditional suitability Appropriate measures ensure maximum performance for joint design and gasket installation. Technical consultation is recommended.
   Limited suitability - Technical consultation is mandatory.

Limited suitability - Technical consultation is mandatory.

**P-T diagram** indicates the maximum permissible combination of internal pressure and service temperature which can be simultaneously applied for a given gasket's thickness, size and tightness class. Given the wide variety of gasket applications and service conditions, these values should only be regarded as a guidance for the proper gasket assembly. In general, thinner gaskets exhibit better P-T properties.

Size (mm): 1500 x 1500 Thickness (mm): 1.5 | 2.0 | 3.0 Other sizes and thicknesses available on request.

> + + + + + ÷ + + + ÷ + + + + + + + + ÷ ? + + + + + ٠ + + + + + + + + ÷ ÷ ? + +

| Acetamide                                | +      | Dioxane                                     | +       | Oleic acid                        |
|------------------------------------------|--------|---------------------------------------------|---------|-----------------------------------|
| Acetic acid, 10%                         | +      | Diphyl (Dowtherm A)                         | +       | Oleum (Sulfuric acid, fuming      |
| Acetic acid, 100% (Glacial)              | +      | Esters                                      | +       | Oxalic acid                       |
| Acetone                                  | +      | Ethane (gas)                                | +       | Oxygen (gas)                      |
| Acetonitrile                             | +      | Ethers                                      | +       | Palmitic acid                     |
| Acetylene (gas)                          | 1      | Ethyl acetate                               | -       | Paraffin oil                      |
| Acid chlorides                           |        | Ethyl alcohol (Ethanol)                     | -       | Pentane                           |
| Acrylic acid                             |        | Ethyl cellulose                             | ÷       | Perchloroethylene                 |
| Acrylopitrile                            |        | Ethyl chloride (gas)                        | -       | Petroleum (Crude oil)             |
| Adiate and                               |        | Ethyless (ass)                              | -       | Dharad (Cashalia aaid)            |
| Adipic acid                              |        | Ethylene (gas)                              | -       | Phenot (Carbotic aciu)            |
| Air (gas)                                |        | Ethytene glycot                             | -       | Phosphoric acid, 40%              |
| Alconois                                 | •      | Formatdenyde (Formatin)                     | +       | Phosphoric acid, 85%              |
| Aldenydes                                | +      | Formamide                                   | +       | Phthalic acid                     |
| Alum                                     | +      | Formic acid, 10%                            | +       | Potassium acetate                 |
| Aluminium acetate                        | +      | Formic acid, 85%                            | +       | Potassium bicarbonate             |
| Aluminium chlorate                       | +      | Formic acid, 100%                           | +       | Potassium carbonate               |
| Aluminium chloride                       | +      | Freon-12 (R-12)                             | +       | Potassium chloride                |
| Aluminium sulfate                        | +      | Freon-134a (R-134a)                         | +       | Potassium cyanide                 |
| Amines                                   | +      | Freon-22 (R-22)                             | +       | Potassium dichromate              |
| Ammonia (gas)                            | +      | Fruit juices                                | +       | Potassium hydroxide               |
| Ammonium bicarbonate                     | +      | Fuel oil                                    | +       | Potassium iodide                  |
| Ammonium chloride                        | +      | Gasoline                                    | +       | Potassium nitrate                 |
| Ammonium hydroxide                       | +      | Gelatin                                     | +       | Potassium permanganate            |
| Amyl acetate                             | +      | Glycerine (Glycerol)                        | +       | Propane (gas)                     |
| Anhydrides                               | +      | Glycols                                     | +       | Propylene (gas)                   |
| Aniline                                  | +      | Helium (gas)                                | +       | Pyridine                          |
| Anisole                                  | +      | Heptane                                     | +       | Salicylic acid                    |
| Argon (gas)                              | ÷.     | Hydraulic oil (Glycol based)                | +       | Seawater/brine                    |
| Asphalt                                  |        | Hydraulic oil (Mineral type)                | ÷       | Silicones (oil/grease)            |
| Parium chlorida                          | -      | Hydraulic oil (Phocphata actor bacad)       | -       | Soluciones (on) grease)           |
| Bandin chonde<br>Rapzaldobyda            |        | Hydrazino                                   | -       | Sodium aluminata                  |
| Benzatuenyde                             |        | Hydracarbanc                                | -       | Sodium atominate                  |
| Benzene<br>Benzeie eeid                  |        | Hydrocal bolis                              | -       | Sodium biculfite                  |
| Benzoic acid                             | +      | Hydrochloric acid, 10%                      | +       | Sodium bisutiite                  |
| Bio-dieset                               | •      | Hydrochtoric acid, 37%                      | •       | Sodium carbonate                  |
| Bio-ethanol                              | +      | Hydrofluoric acid, 10%                      | -       | Sodium chloride                   |
| Black liquor                             | +      | Hydrofluoric acid, 48%                      | -       | Sodium cyanide                    |
| Borax                                    | +      | Hydrogen (gas)                              | +       | Sodium hydroxide                  |
| Boric acid                               | +      | Iron sulfate                                | +       | Sodium hypochlorite (Bleach       |
| Butadiene (gas)                          | +      | Isobutane (gas)                             | +       | Sodium silicate (Water glass      |
| Butane (gas)                             | +      | Isooctane                                   | +       | Sodium sulfate                    |
| Butyl alcohol (Butanol)                  | +      | Isoprene                                    | +       | Sodium sulfide                    |
| Butyric acid                             | +      | Isopropyl alcohol (Isopropanol)             | +       | Starch                            |
| Calcium chloride                         | +      | Kerosene                                    | +       | Steam                             |
| Calcium hydroxide                        | +      | Ketones                                     | +       | Stearic acid                      |
| Carbon dioxide [gas]                     | +      | Lactic acid                                 | +       | Styrene                           |
| Carbon monoxide (gas)                    | +      | Lead acetate                                | +       | Sugars                            |
| Cellosolve                               | +      | Lead arsenate                               | +       | Sulfur                            |
| Chlorine (gas)                           | +      | Magnesium sulfate                           | +       | Sulfur dioxide (gas)              |
| Chlorine (in water)                      | +      | Maleic acid                                 | +       | Sulfuric acid, 20%                |
| Chlorobenzene                            | +      | Malic acid                                  | +       | Sulfuric acid, 98%                |
| Chloroform                               | +      | Methane (gas)                               | +       | Sulfuryl chloride                 |
| Chloroprene                              | +      | Methyl alcohol (Methanol)                   | +       | Tar                               |
| Chlorosilanes                            | +      | Methyl chloride (gas)                       | +       | Tartaric acid                     |
| Chromic acid                             | •      | Methylene dichloride                        | +       | Tetrahydrofuran (THF)             |
| Citric acid                              |        | Methyl ethyl ketone (MEK)                   | -       | Thionyl chloride                  |
| Copper acetate                           | 1      | N-Methyl-nyrrolidone (NMP)                  | -       | Titanium tetrachloride            |
| Conner sulfate                           | ÷      | Milk                                        | -       | Toluene                           |
| Creasate                                 | H      | Mineral oil (ASTM no.1)                     | -       | 2.4-Toluenediisocvanate           |
| Cresole (Cresulic acid)                  | H      | Motor oil                                   | *       | Transformer oil (Minorel tur      |
| Cyclohovono                              |        | Nanhtha                                     | -       | Trichloresthulas                  |
| Cyclonexane                              |        | Naphtha                                     | •       | irichtoroethylehe                 |
| Cyclohexanol                             | +      | INITIC acid, 10%                            | +       | vinegar                           |
| Uyclohexanone                            | +      | Nitric acid, 65%                            | +       | vinyl chloride [gas]              |
| Decalin                                  | +      | Nitrobenzene                                | +       | Vinylidene chloride               |
| Dextrin                                  | +      | Nitrogen (gas)                              | +       | Water                             |
| Dibenzyl ether                           | +      | Nitrous gases (NOx)                         | +       | White spirits                     |
| Dibutyl phthalate                        | +      | Octane                                      | +       | Xylenes                           |
| Dimethylacetamide (DMA)                  | +      | Oils (Essential)                            | +       | Xylenol                           |
| Dimethylformamide (DMF)                  | +      | Oils (Vegetable)                            | +       | Zinc sulfate                      |
| All information and data guoted are base | d upon | decades of experience in the production and | l use o | f sealing elements. This data may |

#### **CHEMICAL RESISTANCE CHART**

The recommendations made here are intended as a guideline for the selection of a suitable gasket type. As the function and durability of products depend upon a number of factors, the data may not be used to support any warranty claims.

Recommended +

÷

+

+ + +

+ +

+

+

+ + +

+

+ +

+ +

+

+

+

+

+

+

+ + +

+

+ + ? Recommendation depends on operating conditions Not recommended -



Web: www.donit.eu E-mail: info@donit.eu

For disclaimer please visit http://donit.eu/disclaimer/

Copyright © DONIT TESNIT, d.o.o.

All rights reserved

Date of issue: 09.2019 / TDS-D2010-09-2019

not be used to support any warranty claims. With its publication this latest edition supersedes all previous issues and is subject to change without further notice.



# DONIFLON<sup>®</sup> 2020

DONIFLON® 2020 is structurally enhanced PTFE gasket sheet filled with silica. It has outstanding chemical resistance to various media, same as DONIFLON® 900E; especially recommended for inorganic acids in all concentrations, except hydrofluoric acid. This material has enhanced creep performance compared to plain PTFE material. It is recommended for pharmaceutical and food industries as well as LNG & cryogenic applications.





| Composition | PTFE, silica                                         |
|-------------|------------------------------------------------------|
| Color       | Pink                                                 |
| Approvals   | BAM (Oxygen), EN 12308, LNG & Cryogenic applications |

#### **TECHNICAL DATA** Typical values for 2 mm thickness

| Density              | DIN 28090-2 | g/cm³    | 2.1       |
|----------------------|-------------|----------|-----------|
| Compressibility      | ASTM F36J   | %        | 7         |
| Recovery             | ASTM F36J   | %        | 45        |
| Tensile strength     | ASTM F152   | MPa      | 14        |
| Stress resistance    | DIN 52913   |          |           |
| 30 MPa, 16 h, 150 °C |             | MPa      | 13        |
| Specific leak rate   | DIN 3535-6  | mg/(s⋅m) | 0.002     |
| pH range             |             |          | 0-14      |
| Operating conditions |             |          |           |
| Minimum temperature  |             | °C/°F    | -200/-328 |
| Maximum temperature  |             | °C/°F    | 260/500   |
| Pressure             |             | bar/psi  | 80/1160   |

#### **P-T DIAGRAM**

EN 1514-1, Type IBC, PN 40, DIN 28091-2 / 3.8, 2.0 mm



- General suitability Under common installation practices and chemical compatibility.
- Conditional suitability Appropriate measures ensure maximum performance for joint design and gasket installation. Technical consultation is recommended.
   Limited suitability - Technical consultation is mandatory.

**P-T diagram** indicates the maximum permissible combination of internal pressure and service temperature which can be simultaneously applied for a given gasket's thickness, size and tightness class. Given the wide variety of gasket applications and service conditions, these values should only be regarded as a guidance for the proper gasket assembly. In general, thinner gaskets exhibit better P-T properties.

Size (mm): 1500 x 1500 Thickness (mm): 1.5 | 2.0 | 3.0 Other sizes and thicknesses available on request.

> + + + + + ÷ + + + ÷ + + + + + + + + ÷ ? + + + + + + ÷ + + + ? + + + + ÷ ? +

| Acetamide                   | •        | Dioxane                               | -  | Oleic acid                     |
|-----------------------------|----------|---------------------------------------|----|--------------------------------|
| Acetic acid 10%             | -        | Dishul (Dowthorm A)                   | -  | Oleum (Sulfuric acid, fuming)  |
| Acetic acid, 100% (Olasial) |          | Estern                                | -  | Quality a sid                  |
| Acetic acid, 100% (Blacial) | -        | Esters                                | •  |                                |
| Acetone                     | +        | Ethane (gas)                          | +  | Uxygen (gas)                   |
| Acetonitrile                | +        | Ethers                                | +  | Palmitic acid                  |
| Acetylene (gas)             | +        | Ethyl acetate                         | +  | Paraffin oil                   |
| Acid chlorides              | +        | Ethyl alcohol (Ethanol)               | +  | Pentane                        |
| Acrylic acid                | +        | Ethyl cellulose                       | +  | Perchloroethylene              |
| Acrylonitrile               | +        | Ethyl chloride (gas)                  | +  | Petroleum (Crude oil)          |
| Adipic acid                 | +        | Ethylene (gas)                        | +  | Phenol (Carbolic acid)         |
| Air (gas)                   | +        | Ethylene glycol                       | +  | Phosphoric acid, 40%           |
| Alcohols                    | +        | Formaldehyde (Formalin)               | +  | Phosphoric acid, 85%           |
| Aldehydes                   | +        | Formamide                             | +  | Phthalic acid                  |
| Alum                        | +        | Formic acid, 10%                      | +  | Potassium acetate              |
| Aluminium acetate           | +        | Formic acid, 85%                      | +  | Potassium bicarbonate          |
| Aluminium chlorate          | +        | Formic acid, 100%                     | +  | Potassium carbonate            |
| Aluminium chloride          | +        | Freon-12 (R-12)                       | +  | Potassium chloride             |
| Aluminium sulfate           | +        | Freon-134a (R-134a)                   | +  | Potassium cyanide              |
| Amines                      | +        | Freon-22 (R-22)                       | +  | Potassium dichromate           |
| Ammonia (gas)               | -        | Fruitiuices                           | -  | Potassium hydroxide            |
| Ammonium bicarbonate        |          | Fuel oil                              | -  | Potassium iodide               |
|                             | <b>.</b> | Gasoline                              | -  | Potassium nitrate              |
| Ammonium bydrovido          | T.       | Golatin                               | T. | Potaccium normangapato         |
| Amul exetate                | <b>.</b> | Chapting (Chaptel)                    |    | Despana (app)                  |
| Arrivitacetate              | -        |                                       | •  |                                |
| Annydrides                  | +        | Glycols                               | +  | Propylene (gas)                |
| Aniline                     | +        | Helium (gas)                          | +  | Pyridine                       |
| Anisole                     | +        | Heptane                               | +  | Salicylic acid                 |
| Argon (gas)                 | +        | Hydraulic oil (Glycol based)          | +  | Seawater/brine                 |
| Asphalt                     | +        | Hydraulic oil (Mineral type)          | +  | Silicones (oil/grease)         |
| Barium chloride             | +        | Hydraulic oil (Phosphate ester based) | +  | Soaps                          |
| Benzaldehyde                | +        | Hydrazine                             | +  | Sodium aluminate               |
| Benzene                     | +        | Hydrocarbons                          | +  | Sodium bicarbonate             |
| Benzoic acid                | +        | Hydrochloric acid, 10%                | +  | Sodium bisulfite               |
| Bio-diesel                  | +        | Hydrochloric acid, 37%                | +  | Sodium carbonate               |
| Bio-ethanol                 | +        | Hydrofluoric acid, 10%                | -  | Sodium chloride                |
| Black liquor                | +        | Hydrofluoric acid, 48%                | -  | Sodium cyanide                 |
| Borax                       | +        | Hydrogen (gas)                        | +  | Sodium hydroxide               |
| Boric acid                  | +        | Iron sulfate                          | +  | Sodium hypochlorite (Bleach)   |
| Butadiene (gas)             | +        | Isobutane (gas)                       | +  | Sodium silicate (Water glass)  |
| Butane (gas)                | +        | Isooctane                             | +  | Sodium sulfate                 |
| Butyl alcohol (Butanol)     | +        | Isoprene                              | +  | Sodium sulfide                 |
| Butyric acid                | +        | Isopropyl alcohol (Isopropanol)       | +  | Starch                         |
| Calcium chloride            | +        | Kerosene                              | +  | Steam                          |
| Calcium hydroxide           | •        | Ketones                               | +  | Stearic acid                   |
| Carbon dioxide (gas)        |          | Lactic acid                           | 1  | Styrene                        |
| Carbon monovide (gas)       | H.       | Lead acetate                          | 1  | Sugars                         |
| Collocolvo                  | T.       | Lead accente                          | T. | Sulfur                         |
| Chlorine (gas)              | H.       | Magnesium sulfate                     |    | Sulfur diovide [gac]           |
| Chlorine (in water)         | H.       | Malaic acid                           | H  | Sulfuric acid 20%              |
| Chlorobenzene               | H.       | Malie apid                            | 1  | Culturic acid, 20%             |
| Chloroform                  | H.       | Mathene (gee)                         | +  | Suturic dCl0, 78%              |
| Chlorotorm                  | +        | Methane (gas)                         | +  | Sulfuryl chloride              |
| Chloroprene                 | +        | Methyl alconol (Methanol)             | +  | Tartaria asid                  |
| Chlorosilanes               | +        | Methyl chloride (gas)                 | +  | lartaric acid                  |
| Chromic acid                | +        | Methylene dichloride                  | +  | Tetrahydrofuran (THF)          |
| Citric acid                 | +        | Methyl ethyl ketone (MEK)             | +  | Thionyl chloride               |
| Copper acetate              | +        | N-Methyl-pyrrolidone (NMP)            | +  | Titanium tetrachloride         |
| Copper sulfate              | +        | Milk                                  | +  | Toluene                        |
| Creosote                    | +        | Mineral oil (ASTM no.1)               | +  | 2,4-Toluenediisocyanate        |
| Cresols (Cresylic acid)     | +        | Motor oil                             | +  | Transformer oil (Mineral type) |
| Cyclohexane                 | +        | Naphtha                               | +  | Trichloroethylene              |
| Cyclohexanol                | +        | Nitric acid, 10%                      | +  | Vinegar                        |
| Cyclohexanone               | +        | Nitric acid, 65%                      | +  | Vinyl chloride (gas)           |
| Decalin                     | +        | Nitrobenzene                          | +  | Vinylidene chloride            |
| Dextrin                     | +        | Nitrogen (gas)                        | +  | Water                          |
| Dibenzyl ether              | +        | Nitrous gases (NOx)                   | +  | White spirits                  |
| Dibutyl phthalate           | +        | Octane                                | +  | Xylenes                        |
| Dimethylacetamide (DMA)     | +        | Oils (Essential)                      | +  | Xylenol                        |
| Dimethylformamide (DMF)     | +        | Oils (Vegetable)                      | +  | Zinc sulfate                   |
|                             |          |                                       | _  |                                |

All information and data quoted are based upon decades of experience in the production and use of sealing elements. This data may not be used to support any warranty claims. With its publication this latest edition supersedes all previous issues and is subject to change without further notice.

#### **CHEMICAL RESISTANCE CHART**

The recommendations made here are intended as a guideline for the selection of a suitable gasket type. As the function and durability of products depend upon a number of factors, the data may not be used to support any warranty claims.

+ Recommended

+

÷

+

+

+

+

+ ? ?

+

+

+
?

+

+

+

+

+

+ +

+

+

- Recommendation depends on operating conditionsNot recommended
- Not recommended



E-mail: info@donit.eu

For disclaimer please visit http://donit.eu/disclaimer/

Copyright © DONIT TESNIT, d.o.o.

All rights reserved

Date of issue: 09.2019 / TDS-D2020-09-2019



# DONIFLON® 2030

DONIFLON® 2030 is structurally enhanced PTFE gasket sheet filled with barium sulfate. It has outstanding chemical resistance to various media, same as DONIFLON® 900E; especially recommended for strong alkaline solutions under moderate temperatures and hydrofluoric acid (up to 48%). This material has enhanced creep performance compared to plain PTFE material. It is the ideal gasket material for equipment where higher bolt loads are required.





| Composition | PTFE, barium sulfate |
|-------------|----------------------|
| Color       | Off-white            |
| Approvals   | Please inquire       |

#### **TECHNICAL DATA** Typical values for 2 mm thickness

| Density              | DIN 28090-2 | g/cm³    | 3.0       |
|----------------------|-------------|----------|-----------|
| Compressibility      | ASTM F36J   | %        | 6         |
| Recovery             | ASTM F36J   | %        | 40        |
| Tensile strength     | ASTM F152   | MPa      | 10        |
| Stress resistance    | DIN 52913   |          |           |
| 30 MPa, 16 h, 150 °C |             | MPa      | 13        |
| Specific leak rate   | DIN 3535-6  | mg/(s⋅m) | 0.002     |
| pH range             |             |          | 0-14      |
| Operating conditions |             |          |           |
| Minimum temperature  |             | °C/°F    | -200/-328 |
| Maximum temperature  |             | °C/°F    | 260/500   |
| Pressure             |             | bar/psi  | 80/1160   |

#### **P-T DIAGRAM**

EN 1514-1, Type IBC, PN 40, DIN 28091-2 / 3.8, 2.0 mm



- General suitability Under common installation practices and chemical compatibility.
- Conditional suitability Appropriate measures ensure maximum performance for joint design and gasket installation. Technical consultation is recommended.
   Limited suitability - Technical consultation is mandatory.

**P-T diagram** indicates the maximum permissible combination of internal pressure and service temperature which can be simultaneously applied for a given gasket's thickness, size and tightness class. Given the wide variety of gasket applications and service conditions, these values should only be regarded as a guidance for the proper gasket assembly. In general, thinner gaskets exhibit better P-T properties.

Size (mm): 1500 x 1500 Thickness (mm): 1.5 | 2.0 | 3.0 Other sizes and thicknesses available on request.

> + + + + + ÷ + + + ÷ + + + + + + + + ÷ ? + + + + + + ÷ + + + ? + + + ÷ ÷ ?

|                             | 1          |                                       |    |                                |
|-----------------------------|------------|---------------------------------------|----|--------------------------------|
| Acetamide                   | +          | Dioxane                               | +  | Oleic acid                     |
| Acetic acid, 10%            | +          | Diphyl (Dowtherm A)                   | +  | Oleum (Sulfuric acid, fuming)  |
| Acetic acid, 100% (Glacial) | +          | Esters                                | +  | Oxalic acid                    |
| Acetope                     | 1          | Ethane (gas)                          | -  | Oxygen (gas)                   |
| Aestenitrile                | H:         | Ethero                                |    | Delmitic acid                  |
| Acetonitrite                | -          | Eulers                                | -  |                                |
| Acetylene (gas)             | •          | Ethylacelale                          | •  |                                |
| Acid chlorides              | +          | Ethyl alcohol (Ethanol)               | +  | Pentane                        |
| Acrylic acid                | +          | Ethyl cellulose                       | +  | Perchloroethylene              |
| Acrylonitrile               | +          | Ethyl chloride (gas)                  | +  | Petroleum (Crude oil)          |
| Adipic acid                 | +          | Ethylene (gas)                        | +  | Phenol (Carbolic acid)         |
| Air (gas)                   | +          | Ethylene glycol                       | +  | Phosphoric acid, 40%           |
| Alcohols                    | +          | Formaldehvde (Formalin)               | +  | Phosphoric acid, 85%           |
| Aldebydes                   | 1          | Formamide                             | -  | Phthalic acid                  |
| Alum                        | -          | Formia acid 10%                       | -  | Peteosium esetete              |
| Atum                        | -          |                                       | •  |                                |
| Aluminium acetate           | +          | Formic acid, 85%                      | +  | Potassium bicarbonate          |
| Aluminium chlorate          | +          | Formic acid, 100%                     | +  | Potassium carbonate            |
| Aluminium chloride          | +          | Freon-12 (R-12)                       | +  | Potassium chloride             |
| Aluminium sulfate           | +          | Freon-134a (R-134a)                   | +  | Potassium cyanide              |
| Amines                      | +          | Freon-22 (R-22)                       | +  | Potassium dichromate           |
| Ammonia (gas)               | +          | Fruit juices                          | +  | Potassium hydroxide            |
| Ammonium bicarbonate        | +          | Fuel oil                              | +  | Potassium iodide               |
| Ammonium chloride           | i.         | Gasoline                              | ÷. | Potassium nitrate              |
| Ammonium hydroxido          | -          | Gelatin                               | 1  | Potassium permanaanata         |
|                             | 1          | Cheering (Cheer-1)                    |    |                                |
| Amyt acetate                | +          | Giycerine (Giyceröl)                  | +  | Fropane (gas)                  |
| Anhydrides                  | +          | Glycols                               | +  | Propylene (gas)                |
| Aniline                     | +          | Helium (gas)                          | +  | Pyridine                       |
| Anisole                     | +          | Heptane                               | +  | Salicylic acid                 |
| Argon (gas)                 | +          | Hydraulic oil (Glycol based)          | +  | Seawater/brine                 |
| Asphalt                     | +          | Hydraulic oil (Mineral type)          | +  | Silicones (oil/grease)         |
| Barium chloride             | +          | Hydraulic oil (Phosphate ester based) | +  | Soaps                          |
| Benzaldebyde                | 1          | Hydrazine                             | 1  | Sodium aluminate               |
| Repage                      | -          | Hydrocarbons                          | -  | Sodium bicarbanata             |
| Benzene                     | -          |                                       | •  |                                |
| Benzoic acid                | +          | Hydrochloric acid, 10%                | +  | Sodium bisulfite               |
| Bio-diesel                  | +          | Hydrochloric acid, 37%                | +  | Sodium carbonate               |
| Bio-ethanol                 | +          | Hydrofluoric acid, 10%                | +  | Sodium chloride                |
| Black liquor                | +          | Hydrofluoric acid, 48%                | +  | Sodium cyanide                 |
| Borax                       | +          | Hydrogen (gas)                        | +  | Sodium hydroxide               |
| Boric acid                  | +          | Iron sulfate                          | +  | Sodium hypochlorite (Bleach)   |
| Butadiene (gas)             | +          | Isobutane (gas)                       | +  | Sodium silicate (Water glass)  |
| Butane (das)                | 1          | Isooctane                             | -  | Sodium sulfate                 |
| Butul elected (Butenel)     |            | leeprese                              | -  | Codium sulfide                 |
|                             | -          |                                       | •  | Soulum Sutide                  |
| Butyric acid                | +          | Isopropyl alconol (Isopropanol)       | +  | Starch                         |
| Calcium chloride            | +          | Kerosene                              | +  | Steam                          |
| Calcium hydroxide           | +          | Ketones                               | +  | Stearic acid                   |
| Carbon dioxide (gas)        | +          | Lactic acid                           | +  | Styrene                        |
| Carbon monoxide (gas)       | +          | Lead acetate                          | +  | Sugars                         |
| Cellosolve                  | +          | Lead arsenate                         | +  | Sulfur                         |
| Chlorine (gas)              | +          | Magnesium sulfate                     | +  | Sulfur dioxide (gas)           |
| Chlorine (in water)         | +          | Maleic acid                           | +  | Sulfuric acid, 20%             |
| Chlorobenzene               | 1          | Malic acid                            | 1  | Sulfuric acid 98%              |
| Chloroferre                 |            | Matic acid                            | -  | Culturic acid, 70%             |
|                             | *          | Mathematical (Mathematical Strength   |    |                                |
| Chloroprene                 | +          | Methyl alcohol (Methanol)             | +  | lar                            |
| Chlorosilanes               | +          | Methyl chloride (gas)                 | +  | Tartaric acid                  |
| Chromic acid                | +          | Methylene dichloride                  | +  | Tetrahydrofuran (THF)          |
| Citric acid                 | +          | Methyl ethyl ketone (MEK)             | +  | Thionyl chloride               |
| Copper acetate              | +          | N-Methyl-pyrrolidone (NMP)            | +  | Titanium tetrachloride         |
| Copper sulfate              | +          | Milk                                  | +  | Toluene                        |
| Creosote                    | +          | Mineral oil (ASTM no.1)               | +  | 2,4-Toluenediisocyanate        |
| Cresols (Cresylic acid)     | -          | Motor oil                             | ÷. | Transformer oil (Mineral type) |
| Cyclobevane                 | -          | Naphtha                               | H- | Trichloroethylopo              |
| Cuelebevenel                | 1          | Nitrie cold 100/                      |    | Vincen                         |
| Cyclonexanol                | +          | Nitric acid, 10%                      | +  | vinegar                        |
| Cyclohexanone               | +          | Nitric acid, 65%                      | +  | Vinyl chloride (gas)           |
| Decalin                     | +          | Nitrobenzene                          | +  | Vinylidene chloride            |
| Dextrin                     | +          | Nitrogen (gas)                        | +  | Water                          |
| Dibenzyl ether              | +          | Nitrous gases (NOx)                   | +  | White spirits                  |
| Dibutyl phthalate           | +          | Octane                                | +  | Xylenes                        |
| Dimethylacetamide (DMA)     | +          | Oils (Essential)                      | +  | Xylenol                        |
| Dimethylformamide (DMF)     | +          | Oils (Vegetable)                      | +  | Zinc sulfate                   |
|                             | . <u> </u> |                                       | -  | L                              |

All information and data quoted are based upon decades of experience in the production and use of sealing elements. This data may not be used to support any warranty claims. With its publication this latest edition supersedes all previous issues and is subject to change without further notice.

#### **CHEMICAL RESISTANCE CHART**

The recommendations made here are intended as a guideline for the selection of a suitable gasket type. As the function and durability of products depend upon a number of factors, the data may not be used to support any warranty claims.

+ Recommended

+

+

÷

+

+

+

+

+ ? +

+

+

+
?

+

+

+

+

+

+ +

+

+

- Recommendation depends on operating conditionsNot recommended
- Not recommended



E-mail: info@donit.eu

For disclaimer please visit http://donit.eu/disclaimer/

Copyright © DONIT TESNIT, d.o.o.

All rights reserved

Date of issue: 09.2019 / TDS-D2030-09-2019

# A perfect fit of **TRUST POSSIBILIES** Customer and challenge driven innovation High level of flexibility Adapt to new changes Broad portfolio of gasket materials and products BEST PRACTICE SOLUTIONS

### Slovenia DONIT TESNIT, d.o.o.

Cesta komandanta Staneta 38 1215 Medvode Slovenia, EU Phone: +386 (0)1 582 33 00 E-mail: info@donit.eu

#### China SUZHOU DONIT SEALING MATERIALS IMPORT AND EXPORT CO., LTD.

No. 8 Suzhou Avenue West Bank of China Building, Room 1207, SIP, 215021, P.R. China Phone: +86 (0)512 659 535 29 E-mail: sales.suzhou@donit.eu

## India DONIT TESNIT INDIA Rep. by Vindonnus Technologies PVT Ltd.

C-406 Mantri Lavendula Mulshi Road Bavdan Khurd Pune - 411 021 India Phone: +91 95 5254 9558 E-mail: sales.india@donit.eu

# Middle East DONIT TESNIT MIDDLE EAST

E-mail: sales.middleeast@donit.eu

#### North America DONIT TESNIT NORTH AMERICA LLC

5110 Fulton Industrial Blvd Suite E Atlanta Georgia 30336, USA E-mail: donit@donit.us

# Latin America DONIT TESNIT LATIN AMERICA

E-mail: sales.latinamerica@donit.eu

## Slovenia DONIT TESNIT, d.o.o.

Donit Industrial Sealing Solutions Paradiž 4 8210 Trebnje Slovenia, EU Phone: +386 (0)8 205 50 44 E-mail: salesgaskets@donit.eu

#### Belgium DISS-EUROPE BVBA

Donit Industrial Sealing Solutions Bannerlaan 50 2280 Grobbendonk Belgium, EU Phone: +32 (0)14 302 100 E-mail: sales@disseurope.be

For disclaimer please visit https://donit.eu/disclaimer Copyright © DONIT TESNIT, d.o.o. All rights reserved Date of issue: 09.2019 / CB-09-2019-Doniflon

www.donit.eu