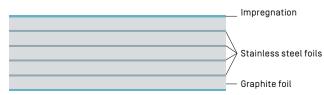


## SIGRAFLEX® HOCHDRUCK PRO


TA Luft-compliant multilayer high-strength sealing sheet made from natural graphite with stainless steel foil reinforcement for extreme conditions



SIGRAFLEX HOCHDRUCK PRO is a multilayer high-strengthgraphite sealing sheet comprising thin layers of high-purity graphite foil and 0.05 mm thick stainless steel foils.

Depending on the sheet thickness required, several layers of graphite and stainless steel foil are joined together in a special adhesive-free process. As a result, the sheets have outstanding mechanical properties. The sealing sheet is impregnated to reduce leakage and improve handling.

SIGRAFLEX HOCHDRUCK PRO allows end users in the process industry to cover almost their entire gasket requirements with a reliable and safe product.

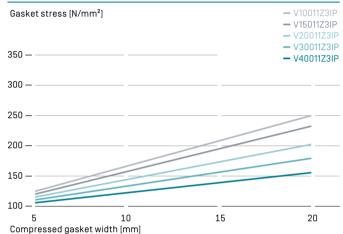


#### ↑ Cross-section

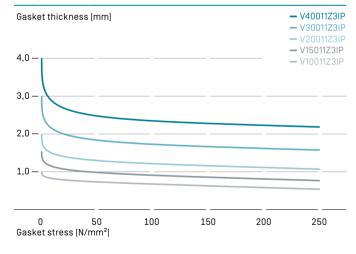
### **Applications**


- For difficult and mechanically highly stressed sealed joints (in tongue-and-groove and flanges with special dimensions, process equipment, heat exchangers, etc.); also suitable for all common pipework and vessel flange designs
- For one-piece gasket designs up to an outside diameter of 1500 mm; for diameters above 1500 mm, for example two-layer structures with segmented sections and staggered joints are recommended
- For operating pressures from vacuum up to 250 bar
- For corrosive media
- Operating temperatures range from 250 °C up to 550 °C depending on chemical resistance. Life time might be limited at high temperatures. Consult the manufacturer when application temperatures exceed 450 °C. Please refer to our technical guideline regarding thermal stability.
- Chemical, petrochemical, refinery and nuclear industries
- Steam pipework and boilers in power generation plants
- Heat transfer oils and heating equipment
- Inspection glasses, pumps, fittings and valves
- Existing plants

#### **Properties**


- Reduction in fugitive emissions due to high leak-tightness
- Complies with the TA Luft leakage requirements for all sheet thicknesses
- Outstanding maximum permissible gasket stress
- High operational reliability, increased plant availability
- Excellent oxidation resistance
- Very high blow-out resistance and mechanical strength
- Very high fault tolerance during assembly and operation
- Good chemical resistance

- Long-term stability of compressibility and recovery, even under fluctuating temperatures
- Good scratch resistance and antistick properties due to special impregnation
- No measurable cold or warm flow characteristics up to the maximum permissible gasket stress
- No aging or embrittlement [no adhesives or binders]
- Ease of processing
- Asbestos-free (no associated health risks)


# Typical maximum permissible gasket stress of SIGRAFLEX HOCHDRUCK PRO at 20 °C



# Typical maximum permissible gasket stress of SIGRAFLEX HOCHDRUCK PRO at 300 °C



## Compressibility of SIGRAFLEX HOCHDRUCK PRO



#### Approvals/Test reports

Please see www.sigraflex.com/downloads for details

- TA Luft (VDI 2440/VDI 2200) for all thicknesses
- Fire safe according to API 607
- Blow-out resistance [TÜV Süd at 2.5 times the normal pressure]
- BAM oxygen
- DVGW [DIN 3535-6]

## Assembly instructions

Our detailed assembly instructions are available on request.

## Material data of SIGRAFLEX® HOCHDRUCK PRO

| Thickness   mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bulk density of graphite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bulk density of graphite   g / cm³   1.1   1.1   1.1   1.1   1.1   Ash content of graphite [DIN 51903]   %   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   |
| Ash content of graphite [DIN 51903]   %   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≤ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥ 0.15   ≥   |
| Purity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total chloride content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total halogen content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Total sulphur content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Oxidation rate in air at 670 °C [TGA]         %/h         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4         < 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Oxidation inhibitor         yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Passive corrosion inhibitor (ASTM F 2168-13)         yes         yes         yes         yes           Reinforcing steel sheet details         316 [L]         318 [L]         48         248         248         248         248         248         248         248         248         248         248         248         248         248         248         248         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reinforcing steel sheet details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ASTM material number   Thickness   mm   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05     |
| Thickness   Mumber of sheets   Number of sheets  |
| Number of sheets   2   3   4   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Residual stress [DIN 52913] $\sigma_{D16 h, 300^{\circ}C, 50  N/mm^2}$ N/mm²         ≥ 48         ≥ 48         ≥ 48         ≥ 48           Gasket factors [DIN E 2505/DIN 28090-1]         Basket width $b_0$ = 20 mm at an internal pressure of $\sigma_{VU/0,1}$ 10 bar         N/mm²         10         10         10         10 $\sigma_{VU/0,1}$ 10 bar         N/mm²         10         10         10         10         10           16 bar         N/mm²         10         12         14         15         15         15         15         16         18         15         12         14         16         18         18         13         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.3         1.2 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Gasket factors (DIN E 2505/DIN 28090-1)         Gasket width b₀ = 20 mm at an internal pressure of         σ vuvo.1       10 bar N/mm²       10 bar N/mm²       10 bar N/mm²       10 bar Dia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Gasket width b₀ = 20 mm at an internal pressure of           σ <sub>VU/O3</sub> 10 bar         N/mm²         10         10         10         10           16 bar         N/mm²         10         10         12         13           25 bar         N/mm²         10         12         14         15           40 bar         N/mm²         12         14         16         18           m         1.3         1.3         1.3         1.3         1.3           Town         N/mm²         305         290         270         240           Mosat 300°C         N/mm²         250         230         210         180           Compression factors (DIN EN 13555)         see www.gasketdata.org           Compressibility         € KSW         %         35         35         35         35           Recovery at 20°C         € KSW         %         5         5         5         5           Hot creep         € WSW         %         4         4         4         4           Young's modulus at 20 N/mm² (DIN 28090-1)         N/mm²         750         750         750         750           ASTM         "m"-factor         2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| σ <sub>VU/0.3</sub> 10 bar N/mm² 10         10         10         10           16 bar N/mm² 10         10         12         13           25 bar N/mm² 25 bar N/mm² 10         12         14         15           40 bar N/mm² 12         14         16         18           π         1.3         1.3         1.3         1.3           σ <sub>V0</sub> Λ <sub>V0</sub> N/mm² 305         290         270         240           Λ/mm² 250         230         210         180           Gasket factors (DIN EN 13555)         see www.gasketdata.org           Compressibility         ε <sub>KSW</sub> %         35         35         35         35           Recovery at 20 °C         ε <sub>KRW</sub> %         5         5         5         5           Hot creep         ε <sub>WSW</sub> %         4         4         4         4           Young's modulus at 20 N/mm² (DIN 28090-1)         N/mm² 750         750         750         750           ASTM         "m"-factor         2.5         2.5         2.5         2.5         2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16 bar N/mm² 10 10 12 13 25 bar N/mm² 10 12 14 15 40 bar N/mm² 12 14 16 18  m 1.3 1.3 1.3 1.3 1.3  σ <sub>V0</sub> N/mm² 305 290 270 240  σ <sub>B0 at 300°C</sub> N/mm² 250 230 210 180  Gasket factors (DIN EN 13555)  Compression factors (DIN 28090-2)  Compressibility ε <sub>KSW</sub> % 35 35 35 35  Recovery at 20°C ε <sub>KRW</sub> % 5 5 5 5 5  Hot creep ε <sub>WSW</sub> % 4 4 4 4 4  Young's modulus at 20 N/mm² (DIN 28090-1) N/mm² 750 750 750 750  ASTM "m"-factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hot creep   Ε   KRW   Hot creep   H |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Recovery at 20 °C $\epsilon_{\text{KRW}}$ %         5         5         5         5           Hot creep $\epsilon_{\text{WSW}}$ %         <3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Recovery at 300 °C         ε <sub>WRW</sub> %         4         4         4         4         4           Young's modulus at 20 N/mm² [DIN 28090-1]         N/mm²         750         750         750         750           ASTM         "m"-factor         2.5         2.5         2.5         2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Young's modulus at 20 N/mm² [DIN 28090-1]         N/mm²         750         750         750           ASTM         "m"-factor         2.5         2.5         2.5         2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ASTM "m"-factor 2.5 2.5 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| v"-factor psi 2000 2000 2000 2000 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Compressibility (ASTM F36) % 35 35 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Recovery [ASTM F36] % 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| The gasket factor conversion formulas $k_0 \times K_0 = \sigma_{VU} \times b_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| as per AD Merkblatt B7 are as follows $k_1 = m \times b_D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\sigma_{\text{VU/0,1}}$ Minimum gasket assembly stress needed to comply with leakage $k_0$ in mm, factor for gasket assembly stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| class L 0.1 (according to DIN 28090-1) k <sub>1</sub> in mm, factor for gasket stress in service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Recommended gasket assembly stress: $\geq 20  \text{N/mm}^2  \text{up to}  \sigma_{B0}$ $\text{K}_D$ in N/mm², max. gasket stress-bearing capacity under assembly stress in service, where $\sigma_{BU}$ is the product assembly conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| of internal pressure $p_i$ and gasket factor m for test and in service $\epsilon_{KSW}$ Compression set under a gasket stress of 35 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $[\sigma_{BU}=p_ixm]$ $oldsymbol{\epsilon}_{KRW}$ Gasket recovery after reduction in gasket stress from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| σ <sub>V0</sub> Maximum permissible gasket stress at 20 °C 35 N/mm² to 1 N/mm²  Cooket group compression under a gasket stress of E0 N/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $σ_{80 \text{ at 300 °C}}$ Maximum permissible gasket stress in service $ε_{\text{WSW}}$ Gasket creep compression under a gasket stress of 50 N/m at 300 °C after 16 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| "m"-factor Similar to m, but defined acc. to ASTM, hence different value $\epsilon_{\text{WRW}}$ Recovery after reduction in gasket stress from 50 N/mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| "y"-factor Minimum gasket stress in psi to 1 N/mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

The percentage changes in thickness of  $\epsilon_{\text{KSW}},\,\epsilon_{\text{KRW}},\,\epsilon_{\text{WSW}}$  und  $\epsilon_{\text{WRW}}$  are relative to the initial thickness.

#### **Product overview**

| Products                           | Characteristics                                                                       | Recommended applications                                                                                                                                                                                                                                   |
|------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SIGRAFLEX FOIL<br>F/C/E/Z/APX/APX2 | Flexible,<br>continuous                                                               | – 250°C to approx. 550°C, for die-formed packing rings, spiral-wound and kammprofile gaskets                                                                                                                                                               |
| SIGRAFLEX STANDARD<br>LCI          | Unreinforced,<br>impregnated                                                          | Raised-face flanges, enamel or glass flanges,<br>highly corrosive media                                                                                                                                                                                    |
| SIGRAFLEX ECONOMY<br>VC4           | Reinforced with bonded stainless steel foil                                           | Pumps, fittings, gas supply and waste gas pipelines                                                                                                                                                                                                        |
| SIGRAFLEX UNIVERSAL<br>VC2I        | Reinforced with tanged stainless steel, impregnated                                   | Pipework and vessels in the chemical and petrochemical industries and in power generation plants                                                                                                                                                           |
| SIGRAFLEX UNIVERSAL PRO<br>VC2IP   | Reinforced with tanged stainless steel, impregnated                                   | TA Luft applications, for pipework and vessels in the chemical and petrochemical industries and in power generation plants                                                                                                                                 |
| SIGRAFLEX SELECT<br>V16010C3I      | Reinforced with stainless steel foil, adhesive-free, impregnated                      | TA Luft applications, raised-face flanges, pipework in the chemical and petrochemical industries                                                                                                                                                           |
| SIGRAFLEX HOCHDRUCK<br>VZ3I        | Multilayer material, reinforced with stainless steel foil, adhesive-free, impregnated | Universal sealing sheet, also for solving sealing problems in pipework, process equipment, tongue-and-groove flanges and non-standard joints in the chemical, petrochemical and nuclear industries and in power generation plants                          |
| SIGRAFLEX HOCHDRUCK PRO<br>VZ3IP   | Multilayer material, reinforced with stainless steel foil, adhesive-free, impregnated | Universal sealing sheet for TA Luft applications, also for solving sealing problems in pipework, process equipment, tongue-and-groove flanges and non-standard joints in the chemical, petrochemical and nuclear industries and in power generation plants |
| SIGRAFLEX APX2 HOCHDRUCK<br>VW3    | Multilayer material, reinforced with stainless steel foil, adhesive-free              | Universal sealing sheet, also for solving sealing problems in high temperature applications in pipework, process equipment, tongue-and-groove flanges and non-standard joints in the chemical and petrochemical industries and in power generation plants  |
| SIGRAFLEX MF<br>VMF                | Adhesive-free laminate<br>made of graphite,<br>stainless steel and PTFE               | Maximum requirements for sealability (TA Luft), safety and process hygiene; sealed joints in the chemical, petrochemical, pharmaceutical and food industries                                                                                               |
| SIGRAFLEX EMAIL<br>VZ3E            | Reinforced with stainless steel foil, adhesive-free                                   | PTFE-envelope gaskets for enameled pipework, vessels and stub connections, etc.                                                                                                                                                                            |



Additional information on our SIGRAFLEX sealing materials can be found under "Download Center" on our homepage.

www.sigraflex.com/downloads



Graphite Materials & Systems | SGL CARBON GmbH | SGL TECHNIC Inc.
Sales Europe/Middle East/Africa | sigraflex-europe@sglcarbon.com
Sales Americas | sigraflex-americas@sglcarbon.com
Sales Asia/Pacific | sigraflex-asia@sglcarbon.com
www.sigraflex.com | www.sglcarbon.com

### TDS HOCHDRUCK PRO\_Sheet.00

05 2018/0.5 E Printed in Germany ®registered trademarks of SGL Carbon SE

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should therefore not be construed as guaranteeing specific properties of the products described or their suitability for a particular application. Any existing industrial property rights must be observed. The quality of our products is guaranteed under our "General Conditions of Sale".