

SIGRAFLEX® STANDARD

Impregnated sealing sheet made from natural graphite

(CD sgl carb ,200 1211 Co sgl carbon CD sol carbon 2001001 CD sgl carbon DIN 28091-GR-10-1 E. 0 mm 20010CI 2001001 CD sgl carbon DIN 28091-GR-10-1 DE! 2.0 mm 12001001 Co sgl carbo DIN 28091-GR-10 n mm 1001

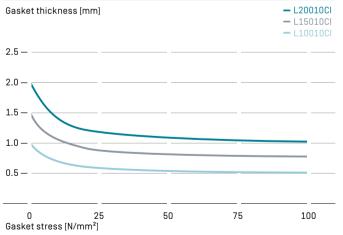
SIGRAFLEX STANDARD is a homogeneous sealing sheet made from flexible graphite. The sealing sheet is impregnated to reduce leakage and improve handling.

Applications

- For raised-face flanges meeting DIN EN 1514 and DIN 2690
- For enamelled flanges and inspection glasses
- For emergency repairs and complicated configurations
- For operating pressures from vacuum up to 40 bar
- For highly corrosive media such as HCl
- Operating temperatures range from 250 °C up to 550 °C depending on chemical resistance. Life time might be limited at high temperatures. Consult the manufacturer when application temperatures exceed 450 °C. Please refer to our technical guideline regarding thermal stability.

Properties

- Excellent oxidation resistance
- Very high fault tolerance during assembly and operation
- Excellent chemical resistance
- Long-term stability of compressibility and recovery, even under fluctuating temperatures
- Good scratch resistance and antistick properties due to special impregnation
- No measurable cold or warm flow characteristics up to the maximum permissible gasket stress
- No aging or embrittlement (no adhesives or binders)
- Ease of cutting and punching
- Asbestos-free (no associated health risks)



 \uparrow Gaskets made from SIGRAFLEX STANDARD

 \uparrow SIGRAFLEX STANDARD sealing sheets and gaskets

Compressibility of SIGRAFLEX STANDARD

Approvals/Test reports

Please see www.sigraflex.com/downloads for details • BAM oxygen

• DVGW (DIN 3535-6)

Assembly instructions

Our detailed assembly instructions are available on request.

Material data of SIGRAFLEX® STANDARD

Typical pr	operties	Units	L1001	0CI	L15010CI	L20010CI
Thickness		mm	1	1.0	1.5	2.0
Dimensions		m	1.0 x 1	1.0	1.0 x 1.0	1.0 x 1.0
Bulk density of graphite		g/cm³	1	1.0	1.0	1.0
Ash content of graphite (DIN 51903)		%	≤ 2	2.0	≤ 2.0	≤ 2.0
Purity		%	≥	98	≥ 98	≥98
Total chloride content		ppm	≤	25	≤ 25	≤ 25
Total halogen content		ppm	≤ 1	00	≤ 100	≤ 100
Total sulphur content		ppm	< 3	00	< 300	< 300
Oxidation rate in air at 670 °C (TGA)		%/h		< 4	< 4	< 4
Oxidation inhibitor			У	/es	yes	yes
Passive corrosion inhibitor (ASTM F 2168-13)			У	/es	yes	yes
Residual stress (DIN 52913) σ _{D 16 h, 300 °C, 50 N/mm²}		N/mm²	≥	47	≥ 47	≥47
Gasket fa	actors (DIN E 2505/DIN 28090-1)					
Gasket w	vidth $b_D = 20$ mm at an internal pressure of					
	$\sigma_{_{ m VU/0,1}}$ 10 bar	N/mm²		11	12	14
	16 bar	N/mm²		13	15	17
	25 bar	N/mm²		16	19	22
	40 bar	N/mm²		20	26	30
	m		-	1.3	1.3	1.3
	$\sigma_{ m vo}$	N/mm²	1	60	140	1
	$\sigma_{ extsf{B0 at 300 °C}}$	N/mm²	1	40	120	100
Gasket fa	actors according to (DIN EN 13555)			see www.gas	ketdata.org	
Compres	sion factors (DIN 28090-2)					
Compres	sibility $\epsilon_{ ext{KSW}}$	%		45	45	45
Recovery at 20 °C $\epsilon_{\rm KRW}$		%		5	5	5
Hot creep ϵ_{wsw}		%		< 3	< 3	< 3
Recovery at 300 °C $\epsilon_{\scriptscriptstyle WRW}$		%		4	4	4
Young's modulus at 20 N/mm² (DIN 28090-1)		N/mm²	7	00	700	700
ASTM	"m"-factor			2	2	2
	"y"-factor	psi	15	00	1500	1500
Compressibility [ASTM F36]		%		45	45	45
Recovery (ASTM F36)		%		11	11	11
The gask	ket factor conversion formulas			k₀ x K₀	= $\sigma_{vv} x b_{D}$	
as per Al	D Merkblatt B7 are as follows			k ₁ = m x b _D		
Definition	IS					
$\sigma_{\text{VU/0,1}}$	Minimum gasket assembly stress needed to co	mply with leakage	k ₀		asket assembly stress	
	class L 0.1 (according to DIN 28090-1) Recommended gasket assembly stress: ≥ 20 N/	(mm ² up to cr	k₁ Kր		asket stress in service	acityundar
$\sigma_{ extsf{BU}}$	Minimum gasket assembly stress in service, where σ_{BU} is the product		ND ND	in N/mm ² , max. gasket stress-bearing capacity under assembly conditions		
	of internal pressure p _i and gasket factor m for t		ϵ_{KSW}		inder a gasket stress of	
æ	$[\sigma_{BU} = p_i \times m]$		EKRW		fter reduction in gasket	stress from
			€ _{WSW}	35 N/mm ² to 1 N/m Gasket creep com	im² pression under a gasket	stress of 50 N/mm²
m	$m = \sigma_{BU}/p_i$		- 101	at 300 °C after 16 h		
"m"-factor Similar to m, but defined acc. to ASTM, hence different value "y"-factor Minimum gasket stress in psi			ϵ_{WRW}	Recovery after reduction in gasket stress from 50 N/mm ² to 1 N/mm ²		

"y"-factor Minimum gasket stress in psi

The percentage changes in thickness of $\epsilon_{\text{\tiny KSW}}, \epsilon_{\text{\tiny KRW}}, \epsilon_{\text{\tiny WSW}}$ und $\epsilon_{\text{\tiny WRW}}$ are relative to the initial thickness.

Product overview

Products	Characteristics	Recommended applications
SIGRAFLEX FOIL F/C/E/Z/APX/APX2	Flexible, continuous	– 250 °C to approx. 550 °C, for die-formed packing rings, spiral-wound and kammprofile gaskets
SIGRAFLEX STANDARD LCI	Unreinforced, impregnated	Raised-face flanges, enamel or glass flanges, highly corrosive media
SIGRAFLEX ECONOMY VC4	Reinforced with bonded stainless steel foil	Pumps, fittings, gas supply and waste gas pipelines
SIGRAFLEX UNIVERSAL VC2I	Reinforced with tanged stainless steel, impregnated	Pipework and vessels in the chemical and petrochemical industries and in power generation plants
SIGRAFLEX UNIVERSAL PRO VC2IP	Reinforced with tanged stainless steel, impregnated	TA Luft applications, for pipework and vessels in the chemical and petrochemical industries and in power generation plants
SIGRAFLEX SELECT V16010C3I	Reinforced with stainless steel foil, adhesive-free, impregnated	TA Luft applications, raised-face flanges, pipework in the chemical and petrochemical industries
SIGRAFLEX HOCHDRUCK VZ3I	Multilayer material, reinforced with stainless steel foil, adhesive-free, impregnated	Universal sealing sheet, also for solving sealing problems in pipework, process equipment, tongue-and-groove flanges and non-standard joints in the chemical, petrochemical and nuclear industries and in power generation plants
SIGRAFLEX HOCHDRUCK PRO VZ3IP	Multilayer material, reinforced with stainless steel foil, adhesive-free, impregnated	Universal sealing sheet for TA Luft applications, also for solving sealing problems in pipework, process equipment, tongue-and- groove flanges and non-standard joints in the chemical, petrochemical and nuclear industries and in power generation plants
SIGRAFLEX APX2 HOCHDRUCK VW3	Multilayer material, reinforced with stainless steel foil, adhesive-free	Universal sealing sheet, also for solving sealing problems in high temperature applications in pipework, process equipment, tongue-and-groove flanges and non-standard joints in the chemical and petrochemical industries and in power generation plants
SIGRAFLEX MF VMF	Adhesive-free laminate made of graphite, stainless steel and PTFE	Maximum requirements for sealability (TA Luft), safety and process hygiene; sealed joints in the chemical, petrochemical, pharmaceutical and food industries
SIGRAFLEX EMAIL VZ3E	Reinforced with stainless steel foil, adhesive-free	PTFE-envelope gaskets for enameled pipework, vessels and stub connections, etc.

Additional information on our SIGRAFLEX sealing materials can be found under "Download Center" on our homepage. www.sigraflex.com/downloads

Graphite Materials & Systems | SGL CARBON GmbH | SGL TECHNIC Inc. Sales Europe/Middle East/Africa | sigraflex-europe@sglcarbon.com Sales Americas | sigraflex-americas@sglcarbon.com Sales Asia/Pacific | sigraflex-asia@sglcarbon.com www.sigraflex.com | www.sglcarbon.com TDS STANDARD_Sheet.00 05 2018/0.5 E Printed in Germany ®registered trademarks of SGL Carbon SE

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should therefore not be construed as guaranteeing specific properties of the products described or their suitability for a particular application. Any existing industrial property rights must be observed. The quality of our products is guaranteed under our "General Conditions of Sale".