

SIGRAFLEX® ECONOMY

Sealing sheet made from natural graphite with bonded stainless steel foil reinforcement

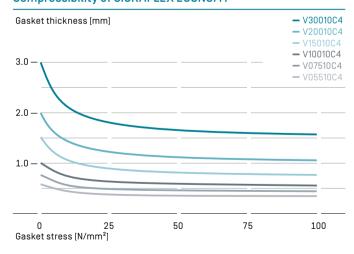
SIGRAFLEX ECONOMY is a bonded sealing sheet made from flexible graphite foil with one or two 0.05 mm thick stainless steel foil reinforcements.

Applications

- For pumps, fittings and valves, especially for thin gaskets
- For unstable flanges with low gasket stresses and for waste gas pipelines, e.g. in incineration plants
- For raised-face flanges meeting DIN EN 1514 and DIN 2690
- For operating pressures from vacuum up to 40 bar
- For corrosive media
- Operating temperatures range from 250 °C up to 550 °C depending on chemical resistance. Life time might be limited at high temperatures. Consult the manufacturer when application temperatures exceed 450 °C. Please refer to our technical guideline regarding thermal stability.

Properties

- Excellent oxidation resistance
- Soft, highly adaptable
- Good chemical resistance
- Long-term stability of compressibility and recovery, even under fluctuating temperatures
- No measurable cold or warm flow characteristics up to the maximum permissible gasket stress
- No aging or embrittlement of the graphite layers
- Thin adhesive film of less than 10 µm with low chloride content
- Ease of processing
- Asbestos-free [no associated health risks]



↑ Gaskets made from SIGRAFLEX ECONOMY

 \uparrow SIGRAFLEX ECONOMY sealing sheets and gaskets

Compressibility of SIGRAFLEX ECONOMY

Approvals/Test reports

Please see www.sigraflex.com/downloads for details

- BAM oxygen
- DVGW (DIN 3535-6)
- RST test report about the burning behaviour of automotive interior

Assembly instructions

Our detailed assembly instructions are available on request.

Material data of SIGRAFLEX® ECONOMY

Typical properties	Units	V05510C4	V07510C4		V15010C4	V20010C4	V30010C4
Thickness	mm	0.55	0.75	1.0	1.5	2.0	3.0
Dimensions	m	1.0 x 1.0	1.0 x 1.0 up to 1	1.0 x 1.0 mm thickness	1.0 x 1.0 also supplied	1.0 x 1.0 I on rolls	1.0 x 1.0
Bulk density of graphite	g/cm³	1.0	1.0		1.0	1.0	1.0
Ash content of graphite [DIN 51903]	%	≤ 2.0	≤ 2.0	≤ 2.0	≤ 2.0	≤ 2.0	≤ 2.0
Purity	%	≥ 98	≥ 98		≥ 98	≥ 98	≥ 98
Total chloride content	ppm	≤ 25	≤ 25		≤ 25	≤ 25	≤ 25
Total halogen content	ppm	≤ 100	≤ 100		≤ 100	≤ 100	≤ 100
Total sulphur content	ppm	< 300	< 300		< 300	< 300	< 300
Oxidation rate in air at 670 °C (TGA)	%/h	< 4	< 4		< 4	< 4	< 4
Oxidation inhibitor		yes	yes	yes	yes	yes	yes
Passive corrosion inhibitor [ASTM F 2168-13]		yes	yes		yes	yes	yes
Reinforcing steel sheet details		,,,,		th stainless ste		,,,,	,
ASTM material number		316 (L)	316 (L)		316 (L)	316 (L)	316 (L)
Thickness	mm	0.05	0.05		0.05	0.05	0.05
Number of sheets		1	1		1	1	2
Residual stress (DIN 52913) $\sigma_{D 16 h, 300 ^{\circ}C, 50 N/mm^2}$	N/mm²	≥ 45	≥ 45		≥ 45	≥ 45	≥ 45
Gasket factors [DIN E 2505/DIN 28090-1]				= 10	= 10		= 10
Gasket width $b_D = 20$ mm at an internal pressure of							
$\sigma_{\text{VU/0,1}}$ 10 bar	N/mm²	10	10	10	10	10	18
16 bar	N/mm²	10	10		12	14	26
25 bar	N/mm²	10	10		17	23	34
40 bar	N/mm²	11	15		27	35	46
m	11///////	1.3	1.3		1.3	1.3	1.3
$\sigma_{\scriptscriptstyle{ m V0}}$	N/mm²	220	200		160	140	100
σ _{BO at 300°C}	N/mm²	200	180		140	100	80
Gasket factors [DIN EN 13555]	11/111111	200	100	see www.gas		100	00
Compression factors [DIN 28090-2]							
Compressibility & KKSW	%	40	40	40	40	40	40
Recovery at 20°C & KRW	%	4	4		4	4	4
Hot creep £wsw	%	< 5	· < 5		< 5	< 5	< 5
Recovery at 300 °C € WRW	%	3	3		3	3	3
Young's modulus at 20 N/mm² (DIN 28090-1)	N/mm²	750	750		750	750	750
ASTM "m"-factor	1011111	2.0	2.0		2.0	2.0	2.0
"y"-factor	psi	1500	1500		1500	1500	1500
Compressibility (ASTM F36)	<u> </u>	40	40		40	40	40
Recovery (ASTM F36)	%	12	12		12	12	12
The gasket factor conversion formulas	- ,,				$= \sigma_{VU} \times b_D$		
as per AD Merkblatt B7 are as follows					m x b _D		
				- -			
Definitions $\sigma_{\text{VU/0,1}}$ Minimum gasket assembly stress needed to con	mply with leak	age	k ₀ ir	n mm, factor for g	asket assembl	v stress	
class L 0.1 (according to DIN 28090-1)			k ₁ in mm, factor for gasket stress in service				
Recommended gasket assembly stress: ≥ 20 N/mm² up to σ _{B0}							
σ_{BU} Minimum gasket assembly stress in service, where σ_{BU} is the produ of internal pressure p_i and gasket factor m for test and in service				assembly conditions Compression set under a gasket stress of 35 N/mm²			
$[\sigma_{BU} = p_1 \times m]$	oot and in sort	7100		asket recovery af			
σ_{vo} Maximum permissible gasket stress at 20 °C			35 N/mm² to 1 N/mm²				
$\sigma_{\text{B0 at 300°C}}$ Maximum permissible gasket stress in service m = $\sigma_{\text{BU}}/p_{\text{j}}$				Ewsw Gasket creep compression under a gasket stress of 50 N/mm ² at 300 °C after 16 h			
"m"-factor Similar to m, but defined acc. to ASTM, hence different value				ecovery after red		et stress from 50	N/mm²
"y"-factor Minimum gasket stress in psi			t	o 1 N/mm²			

The percentage changes in thickness of $\epsilon_{\text{KSW}},\,\epsilon_{\text{KRW}},\,\epsilon_{\text{WSW}}$ und ϵ_{WRW} are relative to the initial thickness.

Product overview

Products	Characteristics	Recommended applications
SIGRAFLEX FOIL F/C/E/Z/APX/APX2	Flexible, continuous	– 250°C to approx. 550°C, for die-formed packing rings, spiral-wound and kammprofile gaskets
SIGRAFLEX STANDARD LCI	Unreinforced, impregnated	Raised-face flanges, enamel or glass flanges, highly corrosive media
SIGRAFLEX ECONOMY VC4	Reinforced with bonded stainless steel foil	Pumps, fittings, gas supply and waste gas pipelines
SIGRAFLEX UNIVERSAL VC2I	Reinforced with tanged stainless steel, impregnated	Pipework and vessels in the chemical and petrochemical industries and in power generation plants
SIGRAFLEX UNIVERSAL PRO VC2IP	Reinforced with tanged stainless steel, impregnated	TA Luft applications, for pipework and vessels in the chemical and petrochemical industries and in power generation plants
SIGRAFLEX SELECT V16010C3I	Reinforced with stainless steel foil, adhesive-free, impregnated	TA Luft applications, raised-face flanges, pipework in the chemical and petrochemical industries
SIGRAFLEX HOCHDRUCK VZ3I	Multilayer material, reinforced with stainless steel foil, adhesive-free, impregnated	Universal sealing sheet, also for solving sealing problems in pipework, process equipment, tongue-and-groove flanges and non-standard joints in the chemical, petrochemical and nuclear industries and in power generation plants
SIGRAFLEX HOCHDRUCK PRO VZ3IP	Multilayer material, reinforced with stainless steel foil, adhesive-free, impregnated	Universal sealing sheet for TA Luft applications, also for solving sealing problems in pipework, process equipment, tongue-and-groove flanges and non-standard joints in the chemical, petrochemical and nuclear industries and in power generation plants
SIGRAFLEX APX2 HOCHDRUCK VW3	Multilayer material, reinforced with stainless steel foil, adhesive-free	Universal sealing sheet, also for solving sealing problems in high temperature applications in pipework, process equipment, tongue-and-groove flanges and non-standard joints in the chemical and petrochemical industries and in power generation plants
SIGRAFLEX MF VMF	Adhesive-free laminate made of graphite, stainless steel and PTFE	Maximum requirements for sealability (TA Luft), safety and process hygiene; sealed joints in the chemical, petrochemical, pharmaceutical and food industries
SIGRAFLEX EMAIL VZ3E	Reinforced with stainless steel foil, adhesive-free	PTFE-envelope gaskets for enameled pipework, vessels and stub connections, etc.

Additional information on our SIGRAFLEX sealing materials can be found under "Download Center" on our homepage.

www.sigraflex.com/downloads

Graphite Materials & Systems | SGL CARBON GmbH | SGL TECHNIC Inc.
Sales Europe/Middle East/Africa | sigraflex-europe@sglcarbon.com
Sales Americas | sigraflex-americas@sglcarbon.com
Sales Asia/Pacific | sigraflex-asia@sglcarbon.com
www.sigraflex.com | www.sglcarbon.com

TDS ECONOMY_Sheet.00

05 2018/0.5 E Printed in Germany *registered trademarks of SGL Carbon SE

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should therefore not be construed as guaranteeing specific properties of the products described or their suitability for a particular application. Any existing industrial property rights must be observed. The quality of our products is guaranteed under our "General Conditions of Sale".